Solar Photovoltaics For Your Home

Doug Elgin
Alabama Solar Association

Alabama Solar Association

- We are a volunteer organization
- We promote all things solar, energy conservation, and living green
- We sponsor speaking and demonstration events for the public
- We'd love to have you join us, dues are minimal (\$20/yr regular, \$15/yr student/senior \$5 off at ASA events)

ASA

- Barring that, give us your e-mail address and we will keep in touch
- Visit us at www.AL-Solar.org

How does PV Work?

■ Light knocks electrons out of the valence band into the conduction band. The excess electrons are attracted through the load to the "holes" in the plusdoped side of the cell.

Electron Configurations

- The outer shell of Si is happiest with 8 electrons (would make the element inert). It is reasonably satisfied sharing 4 electrons with another element
- With P, there is one extra electron (it has 5 in the outer shell). With B, it is one short.
- With P dopant, a photon comes in and is absorbed, moving the electron to a more excited state in the next higher shell (moves it from a valence band to a conduction band)
- That electron tends to wander around, and with the other "loose" electrons creates a negative charge that pushes around the circuit.

Another Way To Look At It

- The physicist's view
- Doesn't help me understand the phenomenon

PV cell at work

■ The charge of the excess electrons causes electrons to flow around the circuit. Note the need for a front and back collection contact and an anti-reflective coating (and a protective transparent covering).

Putting it together

- Individual cell produces ~3-4 watts at about 0.7 volts
- Need many cells in parallel and series to get desired voltage and power

Types of PV

- Monocrystalline Silicon
- Polycrystalline Silicon、
- Other
 - ◆ Amorphous
 - ◆CdTe
 - **♦** Thin film

How They Are Made

This is a monocrystalline silicon example

Solar Cell Technology Is Improving

What's The Pro and Con

Pro

- Saves money
- Does not pollute
- Can provide power if utility fails
- Helps the utility peak use is during the day
- Insurance against inflationary cost increases
- Increases the value of your home(by about \$5/watt of PV capacity)
- Cool to talk about at cocktail parties

Con

- Initial Cost
- Payback is slow (adding some additional risk)

Types of installations

Grid-tied

- A. Solar Array
 - B. Inverter
 - C. Director
 - D. To/from the grid

Off-Grid

■ Needs batteries to store energy. (Batteries have a shorter life – about 6–8 years.)

Installation Choices

- Roof
- Ground
- Other
 - ◆ Trackers
 - Solar shingles

This is ASA's Firefly

- Off-Grid design
- 3 panels (modules)
- Can generate up to 690 watts
- 2 batteries in trailer
- 1000 watt inverter with max power point management

Local Home Example

- Ground installation
- Reflectors increase output
- In back yard
- 20 panels
- 3,500 watt capacity (reflectors add about 20% to that)

A Commercial System in Huntsville

The REG Plant (Memorial & Airport)

- 135 kW capacity
- Demonstration center
- Trackers, ground mount, carport example

Various Mounting Choices

Mount style	kWh/m^2/day
Fixed horizontal	4.37
■ Fixed, 24 - 31°, facing South	4.74
Azimuth track, 30 °	5.65
■ 1 axis track, 30 °	5.95
2 axis track	6.13
■ Fixed, 30 ° with reflectors	5.70

This is for Huntsville, Alabama

Life Cycle

- Most arrays guaranteed for 20 25 years
- Electronics last many years (typically all solid state)
- Batteries (for off-grid systems) typically last
 6 15 years (depends somewhat on discharge depth)

Typical Panels

- 65" X 40"
- 190 to 300 watts capacity
- 12 to 100+ volts output
- \$1 to \$2 per watt

Output vs. Capacity

- An array is rated at its peak power output
 - ◆ But ½ of the day it's night
 - ◆ Inverter losses
 - ◆ Cloudy periods
 - ◆ Off-axis light
- Output for fixed array will average about 15% of peak capacity in Huntsville
- 1 kW system yields about 1400 kWh/yr or about \$16/mo. at 2014 Huntsville Utilities incentive rate

Example – Install a 5.2 kW PV System

- 18 Solar LG Solar mono-Si 290W panels, 5000W inverter, mounting rails, engineering, delivery \$11,222.37 from Solar Direct
- Installation (roof 30°) about \$5,000
- Fixed mount on roof takes up 325 ft^2
- Generates about 6,995 kWh per year to the grid (average household consumes about 12,000 kWh per year)
- Payback varies with utility buyback price and incentives

Another Example

- A generic estimate by a couple of installers for a 5kW PV system completely installed
- \$20,000 (before incentives)
 - ◆ This might be more toward \$15,000 if the installation is simple

Incentives (right now)

- Federal 30% tax credit
- Huntsville Utilities buys PV generated power at a \$0.04/kWh premium (in 2014)
 - ◆ This is the "Green Power Providers" program (further reductions in premium expected in subsequent years
 - ◆ \$1,000 installation incentive
- Nexus 30%, \$3,000 max requires energy audit. (This program has been sporadically available)
- TVA and Huntsville limits you to no more than the power you use. Not in front yard.

Payback (right now)

- Payout
 - ◆ \$17,100 paid out for installation
 - ◆ \$5,100 from Fed
 - - \$1,000 from Huntsville Utilities
 - ◆ Net cost is \$11,000
- Income
 - ◆ 6,995 kWh per year sold at \$0.14 per kWh = \$979
- Breakeven = 11 years (even less with Nexus help)
- Another factor TVA electricity costs have been escalating historically at 4.4%/yr. They project 3% forward.

Net Present Value (NPV)

- NPV is value today of a series of discounted financial flows
- Assume you are thinking of installing a grid-tied PV solar system in Huntsville, Alabama
 - ◆ \$11,000 outlay after incentives for 5.2 kWh PV system
 - ◆ Assume selling power at \$0.14/kWh with 3.2% inflation rate
 - ◆ Allow for solar panel degradation over 25 years
 - Assume discount rate of 3%.
- The NPV is about \$8,000 that is, you're about \$8,000 ahead by doing this project

Grid Parity

- Grid parity is when the cost of generating power from solar panels is at or below the cost from the utility company.
- 5.2 kW solar system cost about \$17,000
- Generates 6,995 kWh/yr for 25 yrs which the utility sells for \$0.10 / kWh = \$17,500
- At grid parity

PV Costs Are Still Coming Down

- Historical PV costs
 - ◆ Trend has been much like Moore's Law
 - ◆ This trend is about −7%/yr
 - ◆ Right now prices are running \$1.00 \$2.00/watt
 - ◆ This curve may be bottoming out

Soft Costs

There is more to a system than hardware

(from Ardani, NREL, May 2012)

Need for streamlined processes.

increase cost.

Inefficient supply chains, O&M, and delays can also

Reducing Costs Further

- The next cost reductions will need to come from "soft costs"
- 2 to 4 times the cost of the solar panels goes into the mounting bracketry, permitting, customer acquisition, and labor
- Germany has cut these soft costs down by a factor of 2 over US numbers
- DOE is investing R&D effort to reduce these costs

Local Providers

- Southern Solar Systems
- Affordable Energy Solutions
- Outpost Solar
- Solar Energy, Alabama
- Huntsville Solar Works
- Many others. See more at our website, AL-Solar.org

If You Would Like To Do Your Own Analysis

- www.RETScreen.net
 - ◆ Much detail available
 - ◆ Complicated program
- Browse for PVWatts
 - ◆ Good first order estimator
- Many other choices

Summarizing

- PV is getting to be more and more affordable
- The payback period for a home system is still longish (but getting better)
- PV solar systems are at, or close to, grid parity
- The value to the environment is great